

Impact of varying transfer velocity in the Probe Baltic Model

Maria Norman Anna Rutgersson

UPPSALA Outline

- CO₂ and O₂ flux calculations
- The atmospheric concentration of CO₂
- The transfer velocity
- Results
- Summary and recommendations

UPPSALA The transfer velocity

Processes influencing the air-sea exchange

(From Wanninkhof et al., 2009)

UPPSALA The NOAA-COARE algorithm

Fairall et al. (2000):

$$k = \frac{u_*}{(r_w + r_a \alpha)}$$

- air- and water side resistance
- bubbles
- water side buoyancy effects

Results – CO₂ yearly mean

Results - CO₂ monthly mean

UPPSALA Results – C_T profiles

UPPSALA Results - O2 yearly mean

UPPSALA Results - O2 monthly mean

UPPSALA Results – O₂ profiles

UPPSALA NIVERSITET Summary and conclusions

- Using different parameterisations for the transfer velocity changes the pCO_{2w} values, while the CO₂ flux is almost unaffected.
- Down to a certain depth, the C_T values are different for different parameterisations.
- Using the COARE algorithm for oxygen transfer velocity instead of LM, changes the O₂ concentration while the flux is almost unaffected.

UPPSALA UNIVERSITET Recommendations

- The parameterisation of Wanninkhof (2009) is to be perferred before Wanninkhof (1992).
- Since the COARE algorithm is the more physical parameterisation of the transfer velocity, this parameterisation is recommended to be used in the Probe Baltic model